#include <algorithm>
#include <bits/stdc++.h>
#include <cstring>
#include <functional>
#include <numeric>
using namespace std;
const int MOD = 1000000007;
const int mod = 998244353;
// #define LOCAL
#ifdef LOCAL
#define dbg(x...) do { cout << "[" << #x <<" -> "; err(x); } while (0)
void err() { cout << "]" << endl; }
template<class T, class... Ts> void err(const T& arg,const Ts&... args) { cout << arg << " "; err(args...); }
#else
#define dbg(x...){}
#endif
#define int long long
#define pp pair<int, int>
class Comb {
vector<int> Facs, Invs;
void expand(size_t n) {
while(Facs.size() < n + 1) Facs.push_back(1ll * Facs.back() * Facs.size() % MOD);
if(Invs.size() < n + 1) { // 线性求阶乘的逆元
Invs.resize(n + 1, 0);
Invs.back() = 1;
for(int a = Facs[n], p = MOD - 2; p; p >>= 1, a = 1ll * a * a % MOD)
if(p & 1) Invs.back() = 1ll * Invs.back() * a % MOD; // 快速乘求 n! 的逆元
for(int j = n-1; !Invs[j]; --j) Invs[j] = 1ll * Invs[j+1] * (j + 1) % MOD;
}
}
public:
Comb() : Facs({1}), Invs({1}) {}
Comb(int n) : Facs({1}), Invs({1}) { expand(n); }
int operator() (int n, int k) {
if(n == 0) return 1;
if(k > n) return 0;
expand(n);
return (1ll * Facs[n] * Invs[n-k] % MOD) * Invs[k] % MOD;
}
};
int fac[20];
int quickpow(int base, int exponent) {
// return fac[exponent ];
int result = 1;
base %= mod;
while (exponent > 0) {
dbg(exponent);
if (exponent & 1) {
result = (result * base) % mod;
}
exponent >>= 1;
base = (base * base) % mod;
}
// dbg(result);
return (result + mod) % mod;
}
Comb comb;
using ll = long long;
int cnt = 0;
const int N = 1e3+10;
vector<int> primes;
vector<bool> is_prime(N + 1, true);
auto init =[](){
for(int i = 2; i < N; i++) {
if(is_prime[i]) primes.push_back(i);
for (int& j: primes) {
if (i * j > N) {
break;
}
is_prime[i * j] = false;
if (i % j == 0) break;
}
}
};
bool F;
void solve(){
int n;
cin >> n;
vector<int> arr(n);
for(auto& x: arr) cin >> x;
set<int> st;
for(int i = 1; i <= n; i++) {
st.insert(i);
}
for(int i = 0; i < n; i++) {
if (st.count(arr[i])) st.erase(arr[i]);
}
set<int> his;
for(int i = 0; i < n; i++) {
if(his.count(arr[i]) || arr[i] > n) {
cout << *st.begin() << " \n"[i == n - 1];
st.erase(st.begin());
}else{
cout << arr[i] << " \n"[i == n - 1];
his.insert(arr[i]);
}
}
}
int T = 0;
signed main(){
#ifndef LOCAL
ios::sync_with_stdio(false);
cin.tie(nullptr); cout.tie(nullptr);
#endif
int t;
// init();
// cin >> t;
int c = 0;
// while(c++ < t) {
solve();
// }
// cout << "done" << endl;
return 0;
}
222. Count Complete Tree Nodes | 215. Kth Largest Element in an Array |
198. House Robber | 153. Find Minimum in Rotated Sorted Array |
150. Evaluate Reverse Polish Notation | 144. Binary Tree Preorder Traversal |
137. Single Number II | 130. Surrounded Regions |
129. Sum Root to Leaf Numbers | 120. Triangle |
102. Binary Tree Level Order Traversal | 96. Unique Binary Search Trees |
75. Sort Colors | 74. Search a 2D Matrix |
71. Simplify Path | 62. Unique Paths |
50. Pow(x, n) | 43. Multiply Strings |
34. Find First and Last Position of Element in Sorted Array | 33. Search in Rotated Sorted Array |
17. Letter Combinations of a Phone Number | 5. Longest Palindromic Substring |
3. Longest Substring Without Repeating Characters | 1312. Minimum Insertion Steps to Make a String Palindrome |
1092. Shortest Common Supersequence | 1044. Longest Duplicate Substring |
1032. Stream of Characters | 987. Vertical Order Traversal of a Binary Tree |
952. Largest Component Size by Common Factor | 212. Word Search II |